CYCLOPENTANOID ALLYLSILANES IN SYNTHESIS: A STEREOSELECTIVE SYNTHESIS OF (+)-HIRSUTENE

T. K. Sarkar, * 1 S. K. Ghosh, 2 P.S.V. Subba Rao 1 and V.R. Mamdapur 2

Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302, India Bhabha Atomic Research Centre, Bio-Organic Division, Bombay - 400 085, India

Summary: A formal total synthesis of the mold metabolite (+)-hirsutene is described from the cyclopentanoid allylsilane $\underline{3}$ where the key step utilizes an epoxy-allylsilane ring closure.

A general route to <u>cis-1,2-disubstituted</u> cyclopentanoid allylsilanes via intramolecular ene reaction of activated 1,6-dienes featuring a homoallylsilane unit as the ene donor has been disclosed. This letter describes an application of the functionalized allylsilane $\underline{3}$, prepared from $\underline{1}$ (Scheme I) to a synthesis of $(\underline{+})$ -hirsutene $(\underline{11})^2$, 3, 12 via the key intermediate 10.

Scheme I

Reduction (LAH/Et₂0) of the ester functionality in $\frac{3}{2}$ and oxidation (PDC/AcOH/3°A mol. sieve) gave aldehyde $\frac{4}{2}$ in 72% yield (Scheme II) which was converted (Me₃SI/NaH/DMSO) to the epoxide $\frac{5}{2}$ (60%). Lewis acid (TiCl₄/CH₂Cl₂/-80°C) induced epoxy-allylsilane ring closure furnished the carbinol $\frac{6}{2}$ (72%). Oxidation (PCC/CH₂Cl₂) of $\frac{6}{2}$ gave aldehyde $\frac{7}{2}$ (73%) which on further oxidation (PdCl₂/CuCl/O₂/DMF-H₂O/55°C/1h) afforded $\frac{8}{2}$ (76%). Intramolecular aldolization (5% aq KOH/EtOH/50-52°C/1.5h) served to channel the stereo-isomeric mixture $\frac{8}{2}$ into the pure $\frac{6}{2}$ (3%) anti, $\frac{6}{2}$ (5%-triquinane $\frac{9}{2}$ (m.p. 63°C). Finally, hydrogenation (10% Pt-C/H₂, latm/EtOAc) furnished $\frac{10}{2}$ (90%), the spectral data (IR, PMR, CMR) of which were found to be identical to those for the same ketone described by Little and Muller. Since $\frac{10}{2}$ has previously been converted into ($\frac{1}{2}$)-hirsutene, the present synthesis is complete.

Scheme II¹³

Acknowledgement: This work was supported in part by a grant (to TKS) from DST(SERC), New Delhi [23 (3p-17)/83/STP-II]. Professor R. D. Little is thanked for kindly providing PMR (300 MHz) and CMR (75 MHz) of authentic 10 for comparison purposes.

References & Notes :

- 1. See preceding paper.
- Franck-Neumann, M.; Miesch, M.; Lacroix, E. <u>Tetrahedron Lett.</u>, 1989, 30, 3529.
 Disanayka, B. W.; Weeden, A. C. <u>J. Org. Chem.</u>, 1987, 52, 2905 and references cited therein for previous systheses.
- For the use of an allylsilane intermidiate in (+)-hirsutene synthesis, see: Funk, R. L.; Bolton, G. L. J. Org. Chem., 1984, 49, 5021. For an approach to the cis, anti, cis-triquinane system of (+)-hirsutene via intramolecular addition of allylsilanes, see Majetich, G.; Defauw, J. Tetrahedron, 1988, 44, 3833.
- Czernecki, S.; Georogoulis, C.; Stewns, C. L.; Vijayakumaran, K. <u>Tetrahedron. Lett.</u>, 1985, <u>26</u>, 1699.
- 5. Corey, E. J.; Chaylovsky, M. J. Am. Chem. Soc., 1965, 87, 1353.
- Procter, G.; Rusell, A. T.; Murphy, P-J.; Tan, T. S.; Mather, A. N. <u>Tetrahedron</u>, 1988, <u>44</u>, 3953.
- 7. Stereoisomeric mixture (38 : 62) by GC.
- 8. Stereoisomeric mixture (67: 17: 16) by GC.
- 9. Magnus, P. D.; Nobbs, M. S. Synth. Commun., 1980, 10, 273.
- 10. Stereoisomeric mixture (65: 35) by GC.
- 11. Oppolzer, W.; Batting, K. Tetrahedron Lett., 1982, 23, 4669.
- 12. Little, R. D.; Muller, G. W. J. Am. Chem. Soc., 1981, 103, 2744.
- 13. All new compounds displayed satisfactory NMR, IR, MS and/or elemental analysis.

(Received in UK 5 December 1989)